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DESIGN OF PLANE THERMOELASTIC

COMPOSITE CONSTRUCTIONS WITH

UNIFORMLY STRESSED REINFORCEMENT

UDC 539.4Yu. V. Nemirovskii and A. P. Yankovskii

The problem of uniformly stressed reinforcement of plane composite constructions under ther-
moforce loading is formulated. An asymptotic analysis of the corresponding boundary-value
problem is performed. Based on this analysis, it is shown that the problem may have two solu-
tions due to the significant nonlinearity of static boundary conditions. An iterative method for
solving the problem is proposed. Particular analytical and numerical solutions are analyzed,
and the level of influence of the thermal action on uniformly stressed reinforced constructions
is studied.

One criterion of rational design of fibrous composite constructions under static loading is the equal
stress of fibers along their trajectories, since the bearing capacity of high-modulus and high-strength rein-
forcement is used most completely if this criterion is satisfied, and the binder is responsible only for uniform
redistribution of loads on elementary fibers. The problem of rational reinforcement (RR) of plane composite
constructions by uniformly stressed high-modulus constant-section fibers, which takes into account the ther-
mal action, is formulated in [1]. Nevertheless, the qualitative and quantitative effect of temperature on the
RR structure has not yet been adequately studied. In the present paper, an asymptotic analysis of the system
of resolving equations of the thermoelastic RR problem is performed, and the effect of the thermal action on
the reinforcement structure and on the stress–strained state of the construction with uniformly stressed fibers
is studied.

1. System of Resolving Equations and Boundary Conditions. A complete closed normalized
system of resolving equations of the RR problem, which describes the behavior of plane thermoelastic con-
structions that are statically loaded and reinforced by two families of uniformly stressed fibers (the binder and
fiber materials are assumed to be isotropic, and their behavior is assumed to be linearly elastic), includes the
equations of equilibrium

Ai(ω,α) + λBi(ω,u, θ) = −bi(ω) ≡ −
(
aFci +

∑
k

ωkFki

)
(i = 1, 2) (1.1)

written in displacements [1], the conditions of constant cross sections of the fibers [1]

∂s(αk, ωk) + ωk∂n(αk, αk) = 0 (k = 1, 2), (1.2)

the conditions of uniformly stressed reinforcement [1]

∂s(αk, u1) cosαk + ∂s(αk, u2) sinαk − αakθ = εk = σk/Ek = const (k = 1, 2), (1.3)

and the equation of plane stationary thermal conductivity [2]
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(Λ11θ,1 + Λ12θ,2),1 + (Λ21θ,1 + Λ22θ,2),2 + µ(θ∗ − θ) = −Q(ω) ≡ −
(
aQc +

∑
k

ωkQk

)
. (1.4)

Here Ai, Bi, ∂s, and ∂n are differential operators of the form

Ai(ω,α) = (−1)i
∑
k

σkωklkj∂s(αk, αk),

Bi(ω,u, θ) = aa1[ui,ii + νuj,ij + (1− ν)(uj,ij + ui,jj)/2− αcθ,i/a2] (1.5)

−
∑
k

[a1(ui,i + νuj,j − αcθ/a2)ωk,i + a2(uj,i + ui,j)ωk,j/2] (j = 3− i, i = 1, 2);

∂s(αk, f) = f,1 cosαk + f,2 sinαk, ∂n(αk, f) = −f,1 sinαk + f,2 cosαk (1.6)

(f is an arbitrarily differentiable function),

α = {α1, α2}, ω = {ω1, ω2}, u = {u1, u2}, (1.7)

Λij = Ω−1
∑
k

ωk{[Ω(λk − λc) + λc]lkilkj + (−1)i+j lkslkrλkλc[Ω(λc − λk) + λk]−1},
(1.8)

(s = 3− i, r = 3− j, i, j = 1, 2).

On one part of the contour Γp, it is possible to set the static boundary conditions [1]

Cn(α,ω) + λDn(ω,u, θ) = pn, Cτ (α,ω) + λDτ (ω,u) = 2pτ , (1.9)

on the other part Γu, one can set the kinematic conditions

ui(Γu) = ui0 (i = 1, 2), (1.10)

and on the entire contour Γ, it is possible to set the thermal conditions

χ0[(Λ11θ,1 + Λ12θ,2)n1 + (Λ21θ,1 + Λ22θ,2)n2 + q0] + χ1(θ − θ0) = 0, (1.11)

where

Cn(α,ω) =
∑
k

σkωk cos2(αk − β), Cτ (α,ω) =
∑
k

σkωk sin 2(αk − β),
(1.12)

Dn(ω,u, θ) = aa1[(u1,1 + νu2,2)n2
1 + (u2,2 + νu1,1)n2

2 + (1− ν)(u1,2 + u2,1)n1n2 − αcθ/a2],

Dτ (ω,u) = aa2[2(u2,2 − u1,1)n1n2 + (u1,2 + u2,1)(n2
1 − n2

2)]; n1 = cosβ, n2 = sinβ.

In addition to the boundary conditions (1.9)–(1.11), it is necessary to set the boundary conditions for
reinforcement intensity on the part of the contour Γω, where the fibers enter the construction [3]:

ωk(Γω) = ω0k (k = 1, 2). (1.13)

Relations (1.1)–(1.13) are written in the following dimensionless variables: σk = σ̄k/|σ̄1|, εk = ε̄k/|ε̄1|,
Ek = Ēk/Ē1, ui = ūi/|Dε̄1|, bi = Db̄i/|σ̄1|, Fci = DF̄ci/|σ̄1|, Fki = DF̄ki/|σ̄1|, αak = ᾱak/ᾱc, αc =
ᾱc/ᾱc = 1, λk = λ̄k/λ̄c, λc = λ̄c/λ̄c = 1, θ = ᾱcθ̄/|ε̄1|, θ0 = ᾱcθ̄0/|ε̄1|, θ∗ = ᾱcθ̄∗/|ε̄1|, Q = ᾱcD

2Q̄/|λ̄cε̄1|,
Qk = ᾱcD

2Q̄k/|λ̄cε̄1|, Qc = ᾱcD
2Q̄c/|λ̄cε̄1|, q0 = ᾱcDq̄0/|λ̄cε̄1|, µ = 2D2µ̄/(hλ̄c), pn = p̄n/|σ̄1|, pτ = p̄τ/|σ̄1|,

ui0 = ūi0/|Dε̄1|, lk1 = cosαk, lk2 = sinαk, a = 1−Ω, Ω =
∑
k

ωk, a1 = 1/(1−ν2), and a2 = 1/(1+ν) (i, k = 1,

2). Here λ = Ē/Ē1 is a small parameter, σ̄k and ε̄k are the stress and mechanical strain in reinforcement of
the kth family, ν is the Poisson’s ratio of the binder, Ē and Ēk are and the elasticity moduli of the binder
and reinforcement of the kth family, respectively, ωk and αk are the intensity and the angle (counted from
the direction x1) of reinforcement by a fiber of the kth family, ūi and b̄i are the components of displacement
and reduced volume load in the directions x̄i of a rectangular Cartesian coordinate system (x̄i = Dxi, where
i = 1 and 2), F̄ci and F̄ki are the components of specific volume loads acting on the binder and reinforcement
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of the kth family, respectively, D and h are the characteristic size and thickness of the plate, ᾱc and ᾱak
are the coefficients of linear thermal expansion of the binder and reinforcement of the kth family, λ̄c and λ̄k
are the thermal conductivities of the binder and reinforcement of the kth family, θ̄ is the plate-temperature
difference in the working and initial states, θ̄0 is the temperature difference of the plate contour in the working
and initial states, θ̄∗ is the temperature difference between the ambient medium (on the side of the front
surfaces of the plate) and the initial state of the plate, Q̄ is the reduced density of internal heat sources in
the fibrous composite, Q̄c and Q̄k are the densities of internal heat sources in the binder and reinforcement of
the kth family, µ̄ is the coefficient of convective heat exchange between the binder and the ambient medium
on the front surfaces of the plate, q̄0 is the heat flux through the side surface of the construction (through
the plate edge), β is the angle that defines the direction of the external normal to the contour Γ, p̄n and
p̄τ are the normal and tangential stresses on Γp, ūi0 is the displacement on the contour, χ0 and χ1 are the
functions depending on the form of the thermal boundary conditions on the contour, and ω0k is the intensity
of reinforcement by a fiber of the kth family, which is set on Γω; summation from 1 to 2 is performed over
the index k; the subscript after the comma indicates partial differentiation with respect to the corresponding
variable xi; the unknown functions are αk, ωk, ui, and θ. The functions ωk should satisfy the conditions

ωk > 0 (k = 1, 2), Ω =
∑
k

ωk < 1. (1.14)

It is shown in [1] that the system of resolving equations (1.1)–(1.4) is a quasilinear system of the
mixed-composite type [4], which is closed relative to the unknown functions αk, ωk, ui, and θ (k, i = 1, 2) and
has two complex characteristics generated by the heat-conduction equation (1.4) and two real characteristics
that coincide with the trajectories of uniformly stressed fibers.

2. Asymptotic Analysis of the System of Resolving Equations and Boundary Conditions.
We turn to zero the small parameter λ in system (1.1) and boundary conditions (1.9). Then, the equations of
asymptotic analysis acquire the following form:

Ai(ω,α) = −bi(ω), i = 1, 2 (λ→ 0); (2.1)

∂s(αk, ωk) + ωk∂n(αk, αk) = 0, k = 1, 2; (2.2)

(Λ11θ,1 + Λ12θ,2),1 + (Λ21θ,1 + Λ22θ,2),2 + µ(θ∗ − θ) = −Q(ω); (2.3)

∂s(αk, u1) cosαk + ∂s(αk, u2) sinαk = εk + αakθ, k = 1, 2. (2.4)

The boundary conditions (1.9)–(1.11) and (1.13) for λ→ 0 are reduced to the form

Cn(α,ω) = pn, Cτ (α,ω) = 2pτ , (x1, x2) ∈ Γp; (2.5)

ui(Γu) = ui0, i = 1, 2; (2.6)

χ0[(Λ11θ,1 + Λ12θ,2)n1 + (Λ21θ,1 + Λ22θ,2)n2 + q0] + χ1(θ − θ0) = 0; (2.7)

ωk(Γω) = ω0k, k = 1, 2. (2.8)

[Obviously, system (2.1)–(2.4) and boundary conditions (2.5)–(2.8) describe a thermoelastic RR problem with
the use of the “fibrous” model of the reinforced layer.]

An analysis of system (2.1)–(2.4) shows that the equations of asymptotic analysis, in contrast to the
initial system (1.1)–(1.4), are divided into three closed subsystems: the first subsystem (2.1), (2.2) consists of
four quasilinear equations and is closed relative to αk and ωk; the second subsystem (2.3) includes one equation
and is closed relative to θ for αk and ωk known from (2.1) and (2.2); the third subsystem (2.4) consists of two
equations and is closed relative to uk (k = 1, 2) for αk and θ known from (2.1)–(2.3). The boundary conditions
(2.5)–(2.8) are divided in a similar manner: conditions (2.5) and (2.8) include four equalities and are closed
(for Γp = Γω) relative to the boundary values of the functions αk and ωk; the thermal conditions (2.7) for αk
and ωk known from the solution of the boundary-value problem (2.1), (2.2), (2.5), (2.8) define the boundary
values of the function θ or the heat-flux conditions on the contour Γ, and the kinematic conditions (2.6) define
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the values of two functions uk (k = 1, 2) on the contour Γu. Hence, the use of asymptotic analysis allows us to
divide the previously connected problems of determining the RR parameters, the temperature field, and the
stress–strained state in the construction into a number of subproblems, which may be sequentially integrated.

It is shown [5] that subsystem (2.1), (2.2) has two double real characteristics determined by the angles
αk (i.e., coinciding with reinforcement trajectories). However, this subsystem cannot be brought to the
characteristic form [6]; therefore, it refers neither to the hyperbolic nor to the parabolic type [in particular,
system (2.1), (2.2) degenerates into a parabolic system for α1 = α2]. If volume loads are not considered in
the RR problem, i.e., bi = 0 in (2.1), then system (2.1), (2.2) is reducible, and its general integral has the
following form:

−x2 cosαk + x1 sinαk = fk(αk),
(2.9)

ωk = gk(αk)[x2 sinαk + x1 cosαk − f ′k(αk)]−1 (k = 1, 2).

Here fk and gk are arbitrary functions of one argument; the prime indicates the derivative with respect to this
argument. If the values of the functions αk and ωk are known on a certain line (in particular, on the contour
of the construction), then the functions fk and gk (k = 1, 2) may be determined on this line using Eq. (2.9).
Let, for instance, on the contour Γω, where the fibers enter the construction, the values of αk(Γω) = α0k(s)
and ωk(Γω) = ω0k(s) be known [see (1.13) and (2.8)]; then from (2.9) we obtain

fk(αk) = −ξ2(s) cosα0k(s) + ξ1(s)α0k(s),
(2.10)

gk(αk) = ω0k(s)[−ξ′2(s) cosα0k(s) + ξ′1(s) sinα0k(s)]/α′0k(s), k = 1, 2,

where ξi are the functions defining the equation of the contour Γω [xi = ξi(s), where i = 1 and 2].
Let us show that the values of the functions αk on the contour may be determined from the static

boundary conditions (2.5). Let the fibers enter the construction on a part of the contour, where the static
boundary conditions are set (Γp coincides with Γω), and go out on a part of the contour Γu, where the
kinematic conditions are set. Then, on the contour Γp, we know the values of the functions ωk (2.8) that
enter Eqs. (2.5), and the system of transcendental equations (2.5) closed relative to αk (k = 1 and 2) may be
transformed to

cos(2ϕ2 − ψ) = (b2 + c2 − σ2
1ω

2
01 + σ2

2ω
2
02)(2σ2ω02

√
b2 + c2 )−1,

tan 2ϕ1 = (2pτ − σ2ω02 sin 2ϕ2)
(

2pn −
∑
k

σkω0k − σ2ω02 cos 2ϕ2

)−1

, (2.11)

αk(Γω) = α0k(s) = ϕk + β (k = 1, 2), cosψ = c/
√
b2 + c2, sinψ = b/

√
b2 + c2,

where b = 2pτ and c = 2pn − σ1ω01 − σ2ω02.
Thus, Eqs. (2.9) and (2.10) and the boundary conditions (2.8) and (2.11) define the expressions for the

RR parameters αk and ωk in an analytical form in the absence of volume loads. The first equation of (2.9)
in the plane x1Ox2 defines a straight line passing at an angle αk to the Ox1 axis. Hence, in the absence of
volume loads, the reinforcement trajectories are straight lines in the asymptotic approximation.

The function β in (2.11) defines the direction of the external normal to the contour Γp. For the fibers
to enter the construction on this contour, the solution of system (2.11) should be sought in the open intervals
ϕk ∈ (π/2, 3π/2). In these intervals, the first equation in (2.11) may have up to two different roots depending
on ψ and the value of the right part; the second equation has only one root for known ϕ2. Thus, system (2.11)
may have up to two different sets of solutions relative to αk(Γp) = α0k(s); hence, Eqs. (2.9) and (2.10) with
allowance for (2.8) determine two sets of RR parameters, which satisfy the same problem of rational design.
It follows from the asymptotic analysis of the system of resolving equations that the RR problem may have
two solutions.
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Note that Eqs. (2.9) and (2.10) are the solutions of the Cauchy problem for system (2.1) (bi = 0) under
the initial conditions αk(Γω) = α0k(s) and ωk(Γω) = ω0k(s). In the presence of volume loads (bi 6= 0), the
Cauchy problem with the initial conditions (2.8) and (2.11) (assuming that all input data are analytical) is
posed for system (2.1) (owing to the fact that all its characteristics are real). As in the case of the absence of
volume forces, we can obtain two sets of RR parameters that satisfy the same initial problem.

If the Cauchy problem for system (2.1), (2.2) with the initial conditions (2.8) and (2.11) is integrated
in the entire region G occupied by the construction in the plane, i.e., the functions αk and ωk are known
everywhere throughout G, then, as is shown in [1, 2], if conditions (1.14) are satisfied, Eq. (2.3) is a second-
order linear elliptic equations relative to the temperature θ, which corresponds to the linear thermal boundary
conditions (2.7). The boundary problems for second-order linear elliptic equations are well studied in [7].

If the functions αk and θ (k = 1, 2) are known from subsystems (2.1)–(2.3), then subsystem (2.4) is
a first-order linear hyperbolic system relative to the displacements uk, and its characteristics are determined
by the angles αk and coincide with the characteristics of system (2.1), (2.2). The initial conditions for
subsystem (2.4) are the kinematic boundary conditions (2.6) set on the part of the contour Γu, where the
fibers are assumed to go out of the construction. In the absence of volume loads and a for constant temperature
in the construction (bi = 0 and θ = const), the solution of the Cauchy problem (2.4), (2.6) may be obtained
analytically. Indeed, it was shown previously that, for bi = 0 (i = 1, 2), the characteristics of system (2.1),
(2.2), and hence, those of system (2.4) are rectilinear, i.e., ∂s(αk, αk) = 0 (k = 1 and 2). Therefore, system (2.4)
for θ = const may be written in the form of Riemann invariants [6] with a zero right part; then the solution
of the Cauchy problem (2.4), (2.6) can be easily constructed:

u1 cosαk + u2 sinαk − (εk + αakθ)(x1 cosαk + x2 sinαk) = u10(s) cosαku(s)

+ u20(s) sinαku(s)− (εk + αakθ)[η1(s) cosαku(s) + η2(s) sinαku(s)] (k = 1, 2). (2.12)

Here εk + αakθ = const, αku(s) are the initial values of the functions αk on the contour Γu, which are known
from the solution of the Cauchy problem (2.8)–(2.11), and ηk are the functions defining the equation for Γu
[xk = ηk(s), where k = 1 and 2]. [Since the characteristics of system (2.4) are rectilinear for bi = 0, the
equalities αk(x1, x2) = αku(s) are valid in Eqs. (2.12).]

Thus, in the asymptotic approximation (λ→ 0), the solution of the thermoelastic RR problem reduced
to sequential integration of the Cauchy problem (2.1), (2.2), (2.8), (2.11), the boundary-value problem (2.3),
(2.7), and the Cauchy problem (2.4), (2.6). The reason for this nonclassical reduction of the boundary-
value problem of RR as λ → 0 to the Cauchy problem is that the system of resolving equations (1.1)–(1.4)
and the boundary conditions (1.9)–(1.11) and (1.13) form a system of nonlinear equations with a singular
perturbation [8].

It should be noted that Eqs. (2.1), (2.2), and (2.11) [in particular, Eqs. (2.9)–(2.11)] do not contain the
temperature θ. Therefore, in the asymptotic approximation (i.e., within the framework of the fibrous model),
the temperature affects only the construction compliance [see (2.4) and (2.12)] but has no influence on the RR
structure. To take this effect into account, it is necessary to construct higher-order approximations using the
method of the small parameter [8] or the following iterative process. Let α(m)

k , ω(m)
k , u(m)

k , and θ(m) (k = 1
and 2) be known mth approximations of unknown functions, then, the (m+1)th approximation for them may
be obtained by integrating the equations

Ai(ω(r),α(r)) = −bi(ω(r))− λBi(ω(m),u(m), θ(m)) (i = 1, 2); (2.13)

∂s(α
(r)
k , ω

(r)
k ) + ω

(r)
k ∂n(α(r)

k , α
(r)
k ) = 0 (k = 1, 2); (2.14)

(Λ(r)
11 θ

(r)
,1 + Λ(r)

12 θ
(r)
,2 ),1 + (Λ(r)

21 θ
(r)
,1 + Λ(r)

22 θ
(r)
,2 ),2 + µ(θ∗ − θ(r)) = −Q(ω(r)); (2.15)

∂s(α
(r)
k , u

(r)
1 ) cosα(r)

k + ∂s(α
(r)
k , u

(r)
2 ) sinα(r)

k = εk + αakθ
(r) (k = 1, 2, r = m+ 1) (2.16)

with the boundary conditions
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Cn(α(r),ω(r)) = pn − λDn(ω(m),u(m), θ(m)),
(2.17)

Cτ (α(r),ω(r)) = 2pτ − λDτ (ω(m),u(m));

u
(r)
i (Γu) = ui0(s) (i = 1, 2); (2.18)

χ0[(Λ(r)
11 θ

(r)
,1 + Λ(r)

12 θ
(r)
,2 )n1 + (Λ(r)

21 θ
(r)
,1 + Λ(r)

22 θ
(r)
,2 )n2 + q0] + χ1(θ(r) − θ0) = 0; (2.19)

ω
(r)
k (Γω) = ω0k(s) (k = 1, 2, r = m+ 1). (2.20)

For the beginning of the iterative process, we use the zero approximation in the form

u
(0)
i = 0, θ(0) = 0 (i = 1, 2). (2.21)

Here α(r), ω(r), and u(r) are vector functions similar to those in (1.7); the expressions for Λ(r)
ij are obtained

from (1.8) by substituting αk and ωk by their rth approximations.
A comparison of equations and boundary conditions of the iterative process (2.13)–(2.20) with the

corresponding equations and boundary conditions (2.1)–(2.8) shows that they differ only by the perturbed right
parts in Eqs. (2.13) and (2.17); at the first iteration (r = 1), due to the initial approximation (2.21), Eqs. (2.1)–
(2.8) coincide with Eqs. (2.13)–(2.20). Therefore, all the results obtained above in analyzing Eqs. (2.1)–(2.8)
are valid for the iterative-process equations (2.13)–(2.20). In particular, the iterative process allows one to
obtain two solutions of the RR problem; in the absence of volume loads (bi = 0), the RR parameters and
displacements (for θ = const) in the first approximation are determined by equalities (2.9)–(2.12). The right
parts in Eqs. (2.13) and (2.17) [in contrast to (2.1) and (2.5)] depend on the temperature θ(m) calculated at
the mth step of the iterative process. Hence, the RR structure determined by the iterative process depends
on the thermal action on the construction.

To verify the convergence of the iterative process, it is reasonable to substitute the rth approximations
of the unknown functions into the system of resolving equations (1.1)–(1.4) and the corresponding boundary
conditions (1.9)–(1.11) and (1.13) and determine the arising residuals. The residuals arise only in Eqs. (1.1)
and boundary conditions (1.9) and have the following form:

δ
(r)
i = λ[Bi(ω(r),u(r), θ(r))−Bi(ω(m),u(m), θ(m))] (i = 1, 2),

δ(r)
n = λ[Dn(ω(r),u(r), θ(r))−Dn(ω(m),u(m), θ(m))], (2.22)

δ(r)
τ = λ[Dτ (ω(r),u(r))−Dτ (ω(m),u(m))] (r = m+ 1).

3. Analysis of Some Solutions of the Thermoelastic RR Problem. We consider an extended
rectangular plate of unit length, which is aligned along the Ox2 axis. Assuming that the load, thermal action,
attachment, and reinforcement of the construction do not vary in the longitudinal direction and the local butt-
end effects may be neglected, the solution of the RR problem depends only on the variable x1. We assume
that the plate is uniformly heated or cooled (θ = const, Q = 0, and µ = 0); then, integrating Eqs. (1.1) and
(1.2), we obtain the following system of resolving equations that describe the thermoelastic RR problem:

λa1

(
1−

∑
k

ωk

)
(ε11 − αcθ/a2) +

∑
k

σkωk cos2 αk = P1(x1),

(3.1)

λa2

(
1−

∑
k

ωk

)
ε12 +

∑
k

σkωk sinαk cosαk = P2(x1);

ωk cosαk = ωk∗ = const (k = 1, 2); (3.2)

ε11 cos2 αk + ε12 sin 2αk = εk + αakθ = const (k = 1, 2). (3.3)
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TABLE 1

Function
Elastic problem (θ = 0) Thermoelastic problem (θ = 4)

λ = 0 λ = 0.01 λ = 0.1 λ = 0 λ = 0.01 λ = 0.1

α1 0.615 48 0.627 29 0.757 50 0.615 48 0.590 61 0.251 00

ε11 1.5000 1.5256 1.8943 2.1000 2.0293 1.4920

Here Pi(x1) = pi −
x1∫
0

bi(s) ds (i = 1, 2), p1 = pn, p2 = pτ , and ωk∗ are integration constants, which

have the meaning of the total cross-sectional area of reinforcement of the kth family intersecting the area of
unit length (along x2) and orthogonal to the direction x1 [ωk∗ may be used instead of ω0k in (1.13)], static
boundary conditions (1.9) are set at the edge x1 = 0, and the plate is rigidly fixed at the edge x1 = 1.
The heat-conduction equation (1.4) for θ = const, Q = 0, and µ = 0 is identically satisfied; therefore, it
is not considered. In addition, it is assumed for simplicity that the reduced load bi is independent of the
reinforcement intensity ωk, which is valid for bi = Fci = Fki (i, k = 1, 2) [see (1.1)]. These equalities are
satisfied under the action of distributed surface loads that arise, for instance, in a viscous liquid flow past a
plate.

System (3.1)–(3.3) may be transformed eliminating the functions ωk, ε11, and ε12 from (3.1) taking
into account Eqs. (3.2) and (3.3). As a result, we obtain a system of transcendental equations that define two
unknowns αk(x1) (k = 1 and 2) at each point x1.

We assume that there is no load in the longitudinal direction x2 (pτ = 0 and b2 = 0). In this case, it is
reasonable to introduce into the construction the fibers of two families made of the same material (σ2 = σ1,
E2 = E1, and αa2 = αa1) and applied with an identical intensity (ω2 = ω1) symmetrically with respect to
the direction x1 (α2 = −α1). This choice of the reinforcement structure allows us to eliminate shear strains
(ε12 = 0) from consideration. In doing so, the second equation in (3.1) is satisfied identically, and we can
eliminate ωk and ε11 from the first one using (3.2) and (3.3):

λa1(1− 2ω1∗/g)[(ε1 + αa1θ)/g2 − αcθ/a2] + 2σ1ω1∗g = P1(x1), g = cosα1(x1). (3.4)

By means of multiplication by g3, Eq. (3.4) is reduced to a fourth-order algebraic equation with
respect to g with coefficients depending on θ and ω1∗ . Consequently, Eq. (3.4) and, hence, the thermoelastic
RR problem considered may have up to four solutions; each solution depends parametrically on the level of
the thermal action θ and the amount of reinforcement introduced into the construction (on ω1∗).

If we consider Eq. (3.4) on the edge x1 = 0 and set the boundary condition (1.13) instead of ω1∗ , then
Eq. (3.4) acquires the following form:

λa1(1− 2ω01)[(ε1 + αa1θ)/g2 − αcθ/a2] + 2σ1ω01g
2 = pn. (3.5)

Equation (3.5) defined the RR structure at all points of the plate if b1(x1) = 0. By means of multiplication
by g2, Eq. (3.5) is reduced to a biquadratic equation with respect to g. Obviously, among all the real roots of
Eqs. (3.4) and (3.5), the solutions of the RR problem are only the roots that satisfy the inequalities 0 6 g =
cosα1 6 1 (the negative values of g are eliminated from consideration by virtue of the assumption that the
fibers enter the plate at the edge x1 = 0) and the physical constraints (1.14).

Table 1 shows the values of unknown functions determining the solution of the elastic (θ = 0) and
thermoelastic (θ = 4) problems of rational reinforcement of a rectangular plate for different λ and the following
input data: ν = 0.3, E1 = σ1 = 1, b1 = b2 = 0, pn = 0.4, pτ = 0, αc = 1, αa1 = 0.1, and ω01 = 0.3. The values
in Table 1 are obtained by solving Eq. (3.5). The second solution of the RR problem, which corresponds to
the second root of Eq. (3.5), has a singularity of the type α1 → π/2, |ε11| → ∞ as λ→ 0 and is not considered
in the present paper.

It follows from Table 1 that, if high-modulus reinforcement is used (λ ≈ 0.01), the solutions of the
elastic and thermoelastic RR problems differ from the solutions in the asymptotic approximation (λ→ 0) by
no more than 5%. Therefore, in the case of high-modulus reinforcement, one can use the solution constructed
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on the basis of the fibrous model of mechanical behavior of the reinforced layer (λ = 0) as an approximate
solution of the RR problem.

In addition, as was noted in Sec. 2 and as follows from Table 1, the RR structures in the elastic and
thermoelastic problems coincide in the asymptotic approximation; therefore, if it is necessary to determine
only the RR structure (without determining the strain of the construction and the temperature field in it) for
λ ≈ 0.01, it is sufficient to solve the Cauchy problem (2.1), (2.2), (2.8), (2.11). Hence, in this case, the effect
of the thermal action on the RR structure may be ignored.

We consider examples of rational reinforcement of annular plates with uniform cooling and heating.
The annular plate is bounded by two circles of radii r0 and r1 (r0/r1 = 0.5). A uniform pressure pn = 0.5
(pτ = 0) is applied to the internal contour Γp, and the plate is rigidly fixed at the external contour Γu.
There are no distributed loads; the construction is uniformly cooled: θ = −2. Owing to the symmetry of the
construction and the absence of circumferential loads, it is reasonable to introduce into the plate two families
of reinforcement made of the same material (σ1 = σ2 = E1 = E2 = 1, αa1 = αa2 = 1.5, λ = 0.1, ν = 0.25, and
αc = 1) and applied with radial symmetry and identical intensity [ω2(r) = ω1(r)]. This allows us to eliminate
shear strains (εrϕ = 0). The solid curves in Fig. 1 show the RR structure corresponding to this thermoelastic
problem under the boundary conditions ωk(Γp) = 0.4 (k = 1 and 2); the dashed curves show the RR structure
of the construction that does not experience the thermal action. A comparison of the reinforcement projects
in Fig. 1 shows that plate cooling leads to condensation of reinforcement trajectories [the number of fibers of
the kth family entering the construction on the contour section Γp of unit length is determined by the product
ωk(Γp) cos(αk(Γp) − β) [3] or by the value of ωk∗ in (3.2)], but the length of fibers decreases thereby, and
the total consumption of the fibrous material decreases by 4%. In the case of a more intense cooling of the
plate at the external contour, the fibers of different families contact each other (α1 = α2), which leads to the
emergence of cuspidal points of reinforcement trajectories.

The solid curves in Fig. 2 show the project of rational reinforcement obtained for the above-described
construction, which is uniformly heated to a temperature θ = 1.2. Plate heating involves a significant change
in the RR structure as compared to the structure of the elastic project (dashed curves); the curvature of
reinforcement trajectories increases and retains the same sign as in the elastic case. The curvatures of rein-
forcement trajectories have different signs in the case of plate cooling and in the elastic project (see Fig. 1).
A more intense heating of the plate increases the absolute value of the curvature of reinforcement trajectories,
and the second condition in (1.14) is no longer satisfied after a certain limiting value of temperature on the
external contour, i.e., in such a project, the fibers will bulge out of reinforcement planes.
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The RR trajectories shown in Figs. 1 and 2, the results of Table 1, and the series of calculations
performed by the authors show that, if the coefficients of linear thermal expansion of the fibers are greater
than the corresponding coefficient of the binder, then the RR trajectories become more scarce if the sign
of temperature coincides with the sign of stress in the fibers; otherwise, the RR trajectories become more
dense. If these coefficients of the fibers are lower than the coefficient of the binder (see Table 1), then, the RR
trajectories become more dense is the signs of the temperature and stress in the fibers coincide; otherwise, the
RR trajectories become more scarce.

We consider an asymmetric thermoelastic RR problem. Let a plane construction be bounded by two
contours Γp and Γu defined in a polar coordinate system by the equations r(ϕ) = 0.5 − 0.05 sin 2ϕ and
r(ϕ) = 1 + 0.08 cos 2ϕ, respectively. A uniform normal load pn = 0.5 (pτ = 0) is applied to the internal
contour Γp, and the construction is rigidly fixed at the external contour Γu. There are no volume loads,
and the plate is uniformly heated to a temperature θ = 2. The mechanical characteristics of the phases of
the composition are the same as in the above examples, except for λ = 0.05. The boundary conditions for
reinforcement intensities are set on the internal contour: ω0k(ϕ) = 0.4 (k = 1 and 2). The solid curves in
Fig. 3 show the RR structure corresponding to this asymmetric problem and obtained by the iterative process
(2.13)–(2.21); the dashed curves show the structure of the elastic project (θ = 0).

Since we have λ ≈ 0.01 in the example considered, the RR structure in the thermoelastic case differs
insignificantly from the RR structure of the elastic project, which could be expected. Thus, in determining the
RR structure in the case of high-modulus reinforcement (λ ≈ 0.01), the thermal action may be ignored, since
the thermoelastic RR project differs insignificantly from the corresponding elastic project. Nevertheless, even
for λ ≈ 0.01, the temperature has a significant effect on the deformability of the construction and on the stress–
strained state in the binder. In the last example (see Fig. 3), the maximum value of the reinforcement intensity
in the binder in the heated construction is 2.41 times greater than in the nonheated construction (θ = 0).
These results are supported by the data listed in Table 1.

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 99-01-
00549).
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